INFRARED SPECTROSCOPIC STUDY OF SITE SYMMETRY EFFECTS FOR SULPHITE AND SULPHATE ANIONS IN SOLID SODIUM SULPHITE OXIDIZED BY AIR OXYGEN

Bohumil HÁJEK, Alexander MUCK and Eva ŠANTAVÁ

Department of Inorganic Chemistry, Prague Institute of Chemical Technology, 166 28 Prague 6

Received January 21st, 1985

The mutual replacement of SO_3^{2-} and SO_4^{2-} anions was studied in $Na_2SO_3.7 H_2O$ crystals where sulphite is slowly oxidized to sulphate by air oxygen. In a series of $Na_2(SO_3, SO_4).7 H_2O$ samples, the C_1 or C_s site symmetry appears for the SO_3^{2-} anion and the site symmetry of the SO_4^{2-} anion is lowered gradually from T_d through D_{2d} or C_{3v} to C_1 . The replacement was also studied for anhydrous sodium sulphite obtained by dehydration or by evaporation from aqueous solution. Despite the different structures of Na_2SO_3 and Na_2SO_4 crystals (C_{31}^1 and D_{24}^{2h} , respectively), the favourable dimensions of the sterically different anions allow the SO_4^{2-} ions, with their own symmetry T_d , to be located in the C_3 sites of the SO_3^{2-} ions in Na_2SO_3 .

The space group of Na₂SO₃.7 H₂O was determined by Dunsmore and Speakman¹ to be $C_{2h}^3 - B2_1/a$ or $C_{2h}^2 - P2_1/m$ in the monoclinic system, with elementary cell parameters for Z = 8 or Z = 4.

The structure of anhydrous Na₂SO₃ was determined by Zachariasen and Buckley² as long ago as 1931 and refined later by other authors³⁻⁵. Na₂SO₃ crystallizes in the trigonal space group $C_{3i}^1 - P3$ with Z = 2; the S—O distances in the anion are 150.4 pm, the nonbonding O—O distances⁹ are 239.7 pm, the trigonal pyramid height is 58.9 pm.

The Na₂SO₄-V modification, stable at room temperature⁶⁻⁹, crystallizes in the space group D_{2h}^{24} -Fddd, Z = 8; the S—O distances⁹ in the regular tetrahedron are 149.3 pm, the O—O distances, 243.5 pm.

Vibrational spectra of Na₂SO₃.7 H₂O have not been so far published. The published spectra of anhydrous Na₂SO₃ do not show crystal symmetry effects^{10,11}. The v_1 and v_3 vibrations are not always resolved¹². Static crystal field manifests itself in the infrared spectrum of Na₂SO₄-V, where the spectral patterns of the anion correspond to site symmetry¹³ D₂.

EXPERIMENTAL

Samples of $Na_2SO_3.7 H_2O$ of different sulphate content were obtained by spontaneous oxidation of the heptahydrate at room temperature. Thin layers of powdered samples were allowed to rest

Collection Czechoslovak Chem. Commun. [Vol. 50] [1985]

in air for 70–90 h. Reagent grade chemicals of Lachema, Brno (approximately 50 mol.% Na_2SO_4) and Mallinckrodt, USA (approximately 99 mol.% content) were used.

Anhydrous samples were prepared either directly, by dehydration of heptahydrate in a vacuum dessicator over P_2O_5 , or by evaporation of aqueous solutions of sodium sulphite.Six anhydrous samples with increasing concentrations of sulphate, up to pure Na_2SO_4 , were obtained in this manner.

Sulphite and sulphate were determined titrimetrically by combined indirect iodometric titration of sulphite and indirect chelometric determination of the sum of sulphite and sulphate as their barium salts using thymolphthalein as the indicator.

The infrared spectra were measured in KBr disks $(4\,000-200\,\text{cm}^{-1})$ and in Nujol mulls $(4\,000-450\,\text{cm}^{-1})$ on a Perkin-Elmer 325 spectrophotometer.

RESULTS AND DISCUSSION

Na₂SO₃.7 H₂O crystallizes in the monoclinic system in the space group $C_{2h}^3 - B2_1/a$: $C_1(8)$, $4C_{2h}(2)$, $2C_i(4)$, $2C_2(4)$, $C_s(4)$, $Z_p = 4$; or in the space group $C_{2h}^2 - P2_1/m$: $C_1(4)$, $4C_i(2)$, $C_s(2)$, $Z_p = 4$. From the multiplicity and subgroups aspect, the SO₃²⁻ anion (trigonal pyramid) possesses the C_1 or C_s site symmetry and the fundamental crystal symmetry correlation is $C_{3y} \rightarrow C_1$ or $2C_s \rightarrow C_{2h}$ (Table I).

The infrared spectra reveal that all the samples of hydrated Na₂SO₃, including the starting commercial preparation, contain SO₄²⁻ anions. The samples were arranged in a series with increasing sulphate content (Fig. 1). The spectra of all of them display $v_s(H_2O)$ and $v_{as}(H_2O)$ vibrations at 3 450 cm⁻¹ and $\delta(H_2O)$ vibrations at 1 640 cm⁻¹. The $v_1(SO_3^{2-})$, $v_3(SO_3^{2-})$, and $v_1(SO_4^{2-})$ vibrations overlap within the 980-950 cm⁻¹ range, as do the $v_2(SO_3^{2-})$ and $v_4(SO_4^{2-})$ vibrations within the 635-620 cm⁻¹ range. The band of the $v_4(E)(SO_3^{2-})$ vibration shows splitting into

FIG. 1

Infrared spectra of $Na_2(SO_3,SO_4)$.7 H₂O powder in Nujol mulls for samples with the SO_4^{2-} content increasing in the series 1-3

Collection Czechoslovak Chem, Commun. [Vol. 50] [1985]

TABLE	I					
Crystal s	ymmetry corre	elation table fo	r the SO_3^2 anion in Na ₂ SO ₃ . 7H ₂ O			
Vibratio	1 C ₃ , —	→ c ₁	C _{2h}	C _{3v}	C, −	+ C _{2h}
v1 v2 v3, v4	$\begin{array}{l} A_1(\mathrm{IR},\mathrm{RA})\\ A_1(\mathrm{IR},\mathrm{RA})\\ E(\mathrm{IR},\mathrm{RA})\\ \end{array}$	A(IR, RA) A(IR, RA) 2A(IR, RA)	$\begin{array}{l} A_{g}(\mathrm{RA})+B_{g}(\mathrm{RA})+A_{u}(\mathrm{IR})+B_{u}(\mathrm{IR})\\ A_{g}(\mathrm{RA})+B_{g}(\mathrm{RA})+A_{u}(\mathrm{IR})+B_{u}(\mathrm{IR})\\ 2A_{g}(\mathrm{RA})+2B_{g}(\mathrm{RA})+2A_{u}(\mathrm{IR})+2B_{u}(\mathrm{IR}) \end{array}$	$\begin{array}{l} A_1(\mathrm{IR},\mathrm{RA})\\ A_1(\mathrm{IR},\mathrm{RA})\\ E(\mathrm{IR},\mathrm{RA})\end{array}$	A'(IR, RA) A'(IR, RA) A'(IR, RA) A'(IR, RA)+	$2A_{g}(RA) + 2B_{u}(IR)$ $2A_{g}(RA) + 2B_{u}(IR)$ $2A_{g}(RA) + 2B_{g}(RA) +$ $2A_{u}(IR) + 2B_{u}(IR)$

Collection Czechoslovak Chem. Commun. [Vol. 50] [1985]

TABLE II

· · · · · · · · · · · · · · · · · · ·	Vibration	<i>T</i> _d	$\longrightarrow C_1$	or C _s
	v ₁	$A_1(RA)$	A(IR, RA)	A'(IR, RA)
	v_2	E(RA)	2A(IR, RA)	A'(IR, RA) + A''(IR, RA)
	v_{3}, v_{4}	$F_2(IR, RA)$	3A(IR, RA)	$2A'(\mathrm{IR},\mathrm{RA}) + A''(\mathrm{IR},\mathrm{RA})$

Correlation table for the symmetry lowering of the SO_4^{2-} anion in Na₂SO₃.7 H₂O

TABLE III

Crystal symmetry correlation table for the SO_3^2 anion in Na_2SO_3

Vibration	C _{3v}	$\longrightarrow C_3 \longrightarrow$	$\longrightarrow C_{3i} \equiv S_6$	C ₃	$\longrightarrow C_1$
v ₁ v ₂ v ₃ , v ₄	$A_1(IR, RA)$ $A_1(IR, RA)$ E(IR, RA)	A(IR, RA) A(IR, RA) E(IR, RA)	$\begin{aligned} A_{u}(\text{IR}) + A_{g}(\text{RA}) \\ A_{u}(\text{IR}) + A_{g}(\text{RA}) \\ E_{u}(\text{IR}) + E_{g}(\text{RA}) \end{aligned}$	A(IR, RA) $A(IR, RA)$ $E(IR, RA)$	A(IR, RA) A(IR, RA) 2A(IR, RA)

FIG. 2

Infrared spectra of $Na_2(SO_3, SO_4)$ powder in KBr disks for samples with the SO_4^2 content increasing in the series 1-5; 6 pure Na_2SO_4

Collection Czechoslovak Chem, Commun. [Vol. 50] [1985]

TABLE IV Crystal symn	netry correlatio	on table for the SO_4^2 – anion in Λ	Va,SO,		
•			6 - 7		
Vibration	T _d	$\rightarrow D_2$	$\longrightarrow D_{2h}$	T _d	> C ₃
v1 v2 v3, v4	$A_1(RA)$ E(RA) $F_2(IR, RA)$	$egin{array}{l} A({ m RA})\ 2A({ m RA})\ B_1({ m IR},{ m RA})+B_2({ m IR},{ m RA})\ +\ B_3({ m IR},{ m RA}) \end{array}$	$egin{array}{l} A_{f g}({f R}{f A})+A_{f u}({f ia})\ 2A_{f g}({f R}{f A})+2A_{f u}({f ia})\ B_{f lg}({f R}{f A})+2A_{f u}({f ia})\ B_{f 2g}({f R}{f A})+B_{f 2g}({f R}{f A})+B_$	$\begin{array}{c} A_1(RA) \\ E(RA) \\ F_2(IR, RA) \end{array}$	A(IR, RA) E(IR, RA) A(IR, RA) + E(IR, RA)

Collection Czechoslovak Chem. Commun. [Vol. 50] [1985]

two components at 495 and 505 cm⁻¹ with increasing sulphate concentration. This splitting, appearing for sample where the sulphate concentration exceeds the sulphite concentration, hence, for Na₂(SO₃, SO₄).7 H₂O mixed crystal, indicates the occurrence of static crystal field effect, with the C_1 or C_s site symmetry of the sulphite anion (Table I). Multiplication of vibrations according to the C_{2h} factor symmetry does not appear in the sample with the lowest sulphate content (nearly pure sulphite); however, the site symmetry of SO₄²⁻ manifests itself, the $v_3(F_2)$ (SO₄²⁻) vibration being markedly split into two bands at 1210-1190 and 1140 cm⁻¹. Two bands seem to overlap in the former, broad band. This splitting indicates that the site symmetry of the sulphate anion lowers from T_d through D_{2d} or C_{3v} as far as C_1 (Table II); the splitting vanishes with increasing sulphate content of samples.

Anhydrous crystalline Na_2SO_3 is oxidized slowly by air oxygen to Na_2SO_4 . Absorption bands of sulphate are therefore always present in the spectra of sodium sulphite. This system can again be discussed in terms of mixed crystals.

Na₂SO₃ crystallizes in the trigonal space group $C_{3i}^1 - P3$: $C_1(6)$, $2C_{3i}$, $2C_3(2)$, $2C_i(3)$, $Z = Z_p = 2$. The own symmetry of the trigonal pyramid of the anion is C_{3v} , its site symmetry is unambiguously C_3 . The basic correlation scheme $C_{3v} \rightarrow C_3 \rightarrow C_{3i}$ applies to the vibrational spectra patterns of the anion (Table III). At room temperature, Na₂SO₄ (modification V) crystallizes in the orthorhombic space group $D_{2h}^{24} - Fddd$: $C_1(32)$, $2D_2(8)$, $2C_i(16)$, $3C_2(16)$, Z = 8, $Z_p = 2$. The site symmetry of the anion is unambiguously D_2 . From the point of view of the crystal symmetry theory, an $SO_3^{2-}(C_{3v})$ particle cannot be located in a site with D_2 symmetry (SO_4^{2-}), while an $SO_4^{2-}(T_4)$ particle can be located in a site with C_3 symmetry (SO_3^{2-}). And indeed, the v_3 vibration of SO_4^{2-} is splited ($F_2 \rightarrow A + E$) into components at 1 215 and 1 135 cm⁻¹ (Table IV). This "replacement" of SO_3^{2-} by SO_4^{2-} ions is consistent with the slow oxidation of sulphite to sulphate. When the concentration of sulphite is below 50 mol.%, the degeneracy of the $v_4(E)(SO_3^{2-})$ vibration in the initial C_3 site is removed (Fig. 2, spectra No 3, 4, 5) which indicates that in agreement with the theory^{14,15}, the $C_3(E)$ site symmetry is lowered to the effective $C_1(2A)$ site symmetry.

Irrespective of whether the mixed crystal has been obtained from a homogeneous phase (solution) (sample No 5) or by mere surface oxidation of the starting Na₂SO₃ (sample No 4), it can be inferred from the splitting of the degenerate $v_4(E)$ (SO₃²⁻) vibration (505 and 495 cm⁻¹) that mixed crystals have formed where the site symmetry manifests itself markedly for the species present in the lower concentration. Hence, a product which has the character of a mixed crystal, rather than a thin oxidized layer not affecting the crystal symmetry of the Na₂SO₃ bulk, is formed even during the gradual oxidation of sulphite crystals by air oxygen.

REFERENCES

- 1. Dunsmore H. S., Speakman J. C.: Acta Crystallogr. 16, 573 (1963).
- 2. Zachariasen W. H., Buckley H. E.: Phys. Rev. 37, 1295 (1931).
- 3. Hambing P. G.: Acta Crystallogr. 6, 98 (1953).
- 4. Swanson H. E., Fuyat R. K.: Natl. Bur. Stds (US), Circ. No 539, 3, 60 (1954).
- 5. Larson L. O., Kierkegaard P.: Acta Chem. Scand. 23, 2253 (1969).
- 6. Gossner E., Mussgnung F.: Z. Kristallogr., Kristallgeometrie, Kristallphys. Kristallchem. 69, 446 (1929).
- 7. Colby M. Y.: Z. Kristallogr., Kristallgeometrie, Kristallphys., Kristallchem. A77, 49 (1931).
- Zachariasen W. H., Ziegler G. E.: Z. Kristallogr., Kristallgeometrie, Kristallphys., Kristallchem. 81, 92 (1932).
- 9. Swanson H. E., Fuyat R. K.: Natl. Bur. Stds (US), Circ. No 539, 2, 1 (1953).
- 10. Evans J. C., Bernstein H.: Can. J. Chem. 33, 1270 (1955).
- 11. Simon A., Waldmann K.: Z. Phys. Chem. (Leipzig), 204, 235 (1955).
- 12. Newman G. A., Powell D. B.: Spectrochim. Acta 19, 213 (1963).
- 13. Steger E., Schmidt W.: Ber. Bunsenges. Phys. Chem. 68, 102 (1964).
- 14. Hornig D. F.: J. Chem. Phys. 16, 1063 (1948).
- 15. Muck A.: Sb. Vys. Šk. Chemicko-Technol. Praze B26, 141 (1981).

Translated by P. Adámek.